Поиск по сайту

ЭНЕРГОЭФФЕКТИВНЫЕ СИСТЕМЫ ВЕНТИЛЯЦИИ ЗДАНИЯ С РЕКУПЕРАЦИЕЙ ТЕПЛА

Создание энергоэффективного административного здания, которое будет максимально приближено к стандарту «PASSIVE HOUSE», невозможно без современной приточно-вытяжной установки (ПВУ) с рекуперацией тепла.

Под рекуперацией подразумевается процесс утилизации тепла внутреннего вытяжного воздуха с температурой tв, выбрасываемого в холодный период с высокой температурой на улицу, для нагрева приточного наружного воздуха. Процесс утилизации тепла происходит в специальных утилизаторах теплоты: пластинчатые рекуператоры, вращающиеся регенераторы, а также в теплообменных аппаратах, устанавливаемых отдельно в воздушных потоках с различной температурой (в вытяжных и приточных установках) и соединяемые промежуточным теплоносителем (гликолем, этиленгликолем).

пластинчатый рекуператор.jpgПоследний вариант наиболее актуален в случае, когда приток и вытяжка разнесены по высоте здания, например, приточная установка – в подвале, а вытяжная – в чердачном помещении, однако эффективность рекуперации таких систем будет значительно меньше (от 30 до 50% в сравнении с ПВУ в одном корпусе

Пластинчатые рекуператоры представляют собой кассету, в которой каналы приточного и вытяжного воздуха разделены между собой листами алюминия. Между приточным и вытяжным воздухом через листы алюминия происходит теплообмен. Внутренний вытяжной воздух через пластины рекуператора нагревает наружный приточный воздух. При этом процесса смешения воздуха не происходит. 

Роторный рекуператор.jpgВ роторных рекуператорах передача тепла от вытяжного воздуха приточному осуществляется через вращающийся цилиндрический ротор, состоящий из пакета тонких металлических пластин. В процессе работы роторного рекуператора вытяжной воздух нагревает пластины, а затем эти пластины перемещаются в поток холодного наружного воздуха и нагревают его. Однако в узлах разделения потоков из-за их негерметичности происходит переток вытяжного воздуха в приточный. Процент перетока может быть от 5 до 20% в зависимости от качества оборудования.  

Для достижения поставленной цели – приблизить здание ФГАУ «НИИ ЦЭПП» к пассивному, в ходе долгих обсуждений и расчетов, было принято решение установить приточно-вытяжные вентиляционные установки с рекуператором Российского производителя энергосберегающих климатических систем – компании TURKOV

Компания TURKOV производит ПВУ для следующих регионов: 

  • Для Центрального региона (оборудование с двухступенчатой рекуперацией серии ZENIT, которое стабильно работает до -25 оС, и отлично подходит для климата Центрального региона России, КПД 65-75%);
  • Для Сибири (оборудование с трехступенчатой рекуперацией серии Zenit HECO стабильно работает до -35 оС, и отлично подходит для климата Сибири, однако часто применяется и в центральном регионе, КПД 80-85%);
  • Для Крайнего Севера (оборудование с четырехступенчатой рекуперацией серии CrioVent стабильно работает до -45 оС, отлично подходит для экстремально холодного климата и применяется в самых суровых регионах России, КПД до 90%).

Традиционные учебные пособия, основанные на старой инженерной школе критикуют фирмы, которые заявляют о высокой эффективности пластинчатых рекуператоров. Обосновывая это тем, что достичь данное значение КПД возможно только при использовании энергии от абсолютно сухого воздуха, а в реальных условиях при относительной влажности удаляемого воздуха = 20-40% (в зимний период) уровень использования энергии сухого воздуха, ограничен.

мембрана рекуператор.jpg

Однако в ПВУ TURKOV используется энтальпийный пластинчатый рекуператор, в котором вместе с переносом неявного тепла из вытяжного воздуха приточному также переносится влага.
Рабочая область энтальпийного рекуператора выполнена из полимерной мембраны, которая пропускает молекулы водяного пара из вытяжного (увлажненного) воздуха и передает приточному (сухому). Смешения вытяжного и приточного потоков в рекуператоре не происходит, так как влага пропускается через мембрану посредством диффузии  из-за разницы концентрации пара с двух сторон мембраны.

нанометрическая линейка.jpg

Размеры ячеек мембраны таковы, что пройти через нее может только водяной пар, для пыли, загрязняющих веществ, капель воды, бактерий, вирусов и запахов мембрана является непреодолимой преградой (в силу соотношения размеров «ячеек» мембраны и остальных веществ).

рекуператор TURKOV.jpgЭнтальпийный рекуператор по сути - пластинчатый рекуператор, где вместо алюминия используется полимерная мембрана. Так как теплопроводность пластины мембраны меньше, чем у алюминия, то требуемая площадь энтальпийного рекуператора значительно больше площади аналогичного алюминиевого рекуператора. С одной стороны это увеличивает габариты оборудования, с другой позволяет передавать большой объем влаги, и именно благодаря этому получается добиться высокой морозостойкости рекуператора и стабильной работы оборудования при сверхнизких температурах.


В зимнее время (уличная температура ниже -5С), если влажность вытяжного воздуха превышает 30 % (при температуре вытяжного воздуха 22…24 оС), в рекуператоре вместе с процессом передачи влаги в приточный воздух происходит процесс накопления влаги на пластине рекуператора. Поэтому необходимо производить периодическое отключение приточного вентилятора и высушивание гигроскопического слоя рекуператора вытяжным воздухом. Длительность, периодичность и температура, ниже которой, требуется процесс просушки, зависит от ступенчатости рекуператора, температуры и влажности внутри помещения. Наиболее часто используемые настройки просушки рекуператора приведены в таблице 1.

Таблица 1. Наиболее часто используемые настройки просушки рекуператора

Ступени рекуператора Температура/Влажность

<20% 20%-30% 30%-35% 35%-45%
2 ступени не требуется 3/45 мин 3/30 мин 4/30 мин
3 ступени не требуется 3/50 мин 3/40 мин 3/30 мин
4 ступени   не требуется 3/50 мин 3/40 мин


Примечание: настройка просушки рекуператора производится только в согласовании с техническим персоналом завода-изготовителя и после предоставления параметров внутреннего воздуха.

Просушка рекуператора требуется только при установке систем увлажнения воздуха, или при работе оборудования с большими, систематичными влагопритоками.

  • При стандартных параметрах внутреннего воздуха режим просушки не требуется.

Материал рекуператора проходит обязательную антибактериальную обработку, поэтому не накапливает загрязнения.

В данной статье в качестве примера административного здания рассмотрено типичное пятиэтажное здание ФГАУ «НИИ ЦЭПП» после намечаемой реконструкции.
Для этого здания был определен расход приточного и вытяжного воздуха в соответствии с нормами воздухообмена в административных помещениях для каждого помещения здания [2].
Суммарные значения расходов приточного и вытяжного воздуха по этажам здания приведены в таблице 2.

Таблица 2. Расчетные расходы приточного/вытяжного воздуха по этажам здания

Этаж Расход приточного воздуха, м3 Расход вытяжного воздуха, м3 ПВУ TURKOV
Подвал 1987 1987   Zenit 2400 HECO SW
1 этаж 6517   6517 Zenit 1600 HECO SW
Zenit 2400 HECO SW
Zenit 3400 HECO SW
2 этаж 5010 5010 Zenit 5000 HECO SW
3 этаж  6208  6208  Zenit 6000 HECO SW
Zenit 350 HECO MW - 2 шт.
4 этаж  6957  6957  Zenit 6000 HECO SW
Zenit 350 HECO MW
5 этаж  4274  4274  Zenit 6000 HECO SW
Zenit 350 HECO MW


В лабораториях ПВУ работают по специальному алгоритму с компенсацией вытяжки из вытяжных шкафов, т.е при включении какого-либо вытяжного шкафа вытяжка ПВУ автоматически уменьшается на величину вытяжки шкафа. На основе расчетных расходов был произведен выбор приточно-вытяжных установок Turkov. Каждый этаж будет обслуживаться своей ПВУ Zenit HECO SW и Zenit HECO MW с трехступенчатой рекуперацией до 85 %.
Вентиляция первого этажа осуществляется ПВУ, которые установлены в подвале и на втором этаже. Вентиляция остальных этажей (кроме лабораторий на четвертом и третьем этаже) обеспечивается ПВУ, установленными на техническом этаже.
Внешний вид ПВУ установки Zenit Heco SW приведен на рисунке 6. В таблице 3 приведены технические данные для каждой ПВУ установки.


рисунок 6.jpgУстановка Zenit Heco SW включает в себя:
  • Корпус с тепло-шумоизоляцией;
  • Приточный вентилятор;
  • Вытяжной вентилятор;
  • Приточный фильтр;
  • Вытяжной фильтр;
  • 3-x ступенчатый рекуператор;
  • Водяной нагреватель;
  • Смесительный узел;
  • Автоматика с комплектом датчиков;
  • Проводной пульт управления.

Важным плюсом является возможность монтажа оборудования как вертикально, так и горизонтально под потолком, что применяется в рассматриваемом здании. А так же возможность располагать оборудование в холодных зонах (чердаках, гаражах, техпомещениях и т.д.) и на улице, что весьма актуально при реставрациях и реконструкциях зданий.

рисунок 8.jpg

ПВУ Zenit HECO MW – небольшие ПВУ с рекуперацией тепла и влаги с водяным нагревателем и смесительным узлом в легком и универсальном корпусе из вспененного полипропилена, предназначенные для поддержания климата в небольших помещениях, квартирах, домах. 

stereoVAV 2.jpg

Компания TURKOV самостоятельно разработала и производит в России автоматику Monocontroller для вентиляционного оборудования. Данная автоматика используется в ПВУ Zenit Heco SW

  • Контроллер управляет электронно-коммутируемыми вентиляторами по линии MODBUS, что позволяет следить за работой каждого вентилятора.
  • Управляет водяными нагревателями и охладителями, для точного поддержания температуры подаваемого воздуха как в зимний, так и в летний периоды.
  • Для контроля CO2 в конференц-зале и переговорных автоматика оснащается специальными датчиками CO2. Оборудование будет следить за концентрацией CO2 и автоматически изменять расход воздуха подстраиваясь под количество людей в помещении, для поддержания требуемого качества воздуха, тем самым уменьшая теплопотребление оборудования.
  • Комплектная система диспетчеризации позволяет максимально просто организовать диспетчерский пункт. А система удаленного мониторинга позволит следить за оборудованием из любой точки мира.

пульт макет.jpg

Возможности пульта управления:
  • Часы, дата;
  • Три скорости вентилятора;
  • Отображение состояния фильтра в реальном времени;
  • Недельный таймер;
  • Установка температуры приточного воздуха;
  • Отображение неисправностей на дисплее.

          

Оценка эффективности

Для оценки эффективности установки в рассматриваемом здании приточно-вытяжных установок Zenit Heco SW с рекуперацией определим расчетные, средние и годовые нагрузки на систему вентиляции, а также расходы в рублях за холодный период, теплый период и за весь год для трех вариантов ПВУ:

  1. ПВУ с рекуперацией Zenit Heco SW (КПД рекуператора 85 %);
  2. Прямоточная ПВУ (т.е без рекуператора);
  3. ПВУ с КПД возврата тепла 50 %.

Нагрузка на систему вентиляции – это нагрузка на воздухонагреватель, который догревает (в холодный период) или охлаждает (в теплый период) приточный воздух после рекуператора. В прямоточной ПВУ в нагревателе нагревается воздух от начальных параметров, соответствующих параметрам наружного воздуха в холодный период, а в теплый период охлаждается. Результаты расчета расчетной нагрузки на систему вентиляции в холодный  период по этажам здания приведены в таблице 3. Результаты расчета расчетной нагрузки на систему вентиляции в теплый период для всего здания приведены в таблице 4.

Таблица 3. Расчетная нагрузка на систему вентиляции в холодный период по этажам, кВт

Этаж ПВУ Zenit HECO SW/MW  Прямоточная ПВУ ПВУ с рекуперацией 50%  
Подвал 3,5 28,9    14,0
1 этаж 11,5    94,8 45,8
2 этаж 8,8 72,9 35,2
3 этаж  10,9   90,4   43,6
4 этаж  12,2 101,3   48,9
5 этаж  7,5 62,2   30,0
Суммарная нагрузка, кВт  54,4 450,6   217,5

Таблица 4. Расчетная нагрузка на систему вентиляции в теплый период по этажам, кВт

Этаж ПВУ Zenit HECO SW/MW  Прямоточная ПВУ ПВУ с рекуперацией 50%  
Суммарная нагрузка, кВт  20,2 33,1   31,1


Так как расчетные температуры наружного воздуха в холодный и теплый период – не постоянны во время отопительного периода и периода охлаждения, необходимо определить среднюю вентиляционную нагрузку при средней температуре наружного воздуха:
Результаты расчета годовой нагрузки на систему вентиляции в теплый период и холодный период для всего здания приведены в таблицах 5 и 6.

Таблица 5. Годовая нагрузка на систему вентиляции в холодный период по этажам, кВт

Этаж ПВУ Zenit HECO SW/MW  Прямоточная ПВУ ПВУ с рекуперацией 50%  
Суммарная нагрузка, кВт  66105 655733   264421
Суммарная нагрузка, МВт  66,1 655,7   264,4

Таблица 6. Годовая нагрузка на систему вентиляции в теплый период по этажам, кВт

Этаж ПВУ Zenit HECO SW/MW  Прямоточная ПВУ ПВУ с рекуперацией 50%  
Суммарная нагрузка, кВт  12362 20287   19019
Суммарная нагрузка, МВт  12,4 20,3 19,0

Определим расходы в рублях за год на догрев, охлаждение и работу вентиляторов.
Расход в рублях на догрев получается перемножением годовых значений вентиляционных нагрузок (в Гкал) в холодный период на стоимость 1 Гкал/час тепловой энергии от сети и на время работы ПВУ в режиме нагрева. Стоимость 1 Гкал/ч тепловой энергии от сети принимаем равной 2169 рублей.
Расходы в рублях на работу вентиляторов получены перемножением их мощности, времени работы и стоимости 1 кВт электричества. Стоимость 1 кВт∙ч электричества принимаем равной 5,57 руб.
Результаты расчетов расходов в рублях на работу ПВУ в холодный период приведены в таблице 7, а в тёплый период в таблице 8. В таблице 9 приведено сравнение всех вариантов ПВУ по всему зданию ФГАУ "НИИ ЦЭПП".

Таблица 7. Расходы в рублях за год на работу ПВУ в холодный период

Этаж ПВУ Zenit HECO SW/MW  Прямоточная ПВУ ПВУ с рекуперацией 50%  

 На догрев На вентиляторы   На догрев На вентиляторы На догревНа вентиляторы
Суммарные затраты 368 206 337 568  3 652 433 337 568 1 472 827 337 568

Таблица 8. Расходы в рублях за год на работу ПВУ в теплый период

Этаж ПВУ Zenit HECO SW/MW  Прямоточная ПВУ ПВУ с рекуперацией 50%  

 На охлаждение На вентиляторы   На охлаждение На вентиляторы На охлаждениеНа вентиляторы
Суммарные затраты 68 858 141 968 112 998 141 968 105 936 141 968

Таблица 9. Сравнение всех ПВУ

Величина ПВУ Zenit HECO SW/MW  Прямоточная ПВУ ПВУ с рекуперацией 50%  
Расчетная вент. нагрузка в холодный период, кВт  54,4 450,6   217,5
Расчетная вент. нагрузка в теплый период, кВт  20,2 33,1 31,1
Средняя вент. нагрузка в холодный период, кВт  25,7 255,3   103,0
Средняя вент. нагрузка в теплый период, кВт  11,4 18,8   17,6
Годовая вент. нагрузка в холодный период, кВт  66 105 655 733 264 421
Годовая вент. нагрузка в теплый период, кВт  12 362 20 287   19 019
Суммарная годовая вент. нагрузка, кВт  78 468 676 020 283 440
Затраты на догрев, руб 122 539 1 223 178   493 240
Затраты на охлаждение, руб 68 858 112 998   105 936
Затраты на вентиляторы зимой, руб 337 568
Затраты на вентиляторы летом, руб 141 968
Суммарные годовые затраты, руб  670 933 1 815 712 1 078 712

Анализ таблицы 9 позволяет сделать однозначный вывод – приточно-вытяжные установки Zenit HECO SW и Zenit HECO MW с рекуперацией тепла и влаги фирмы Turkov очень энергоэффективные.
Суммарная годовая вентиляционная нагрузка ПВУ TURKOV меньше нагрузки в ПВУ с КПД 50% на 72%, а в сравнении с прямоточной ПВУ на 88%. ПВУ Turkov позволит сэкономить 1 млн 145 тыс.руб – в сравнении с прямоточной ПВУ или 408 тыс.руб – в сравнении с ПВУ, КПД которой 50%.

Где ещё экономия…

Основной причиной отказов применения систем с рекуперацией являются относительно высокие начальные капиталовложения, однако при более полном взгляде на затраты на застройку, такие системы не только быстро окупаются, но и позволяют уменьшить общие капиталовложения при застройке.В качестве примера возьмем наиболее массовую «типовую» застройку с применением жилых, офисных зданий и магазинов.
Среднее значение теплопотерь готовых зданий: 50 Вт/м2.

  • Включено: Теплопотери через стены, окна, кровлю, фундамент, и т.д.
Среднее значение общеобменной приточной вентиляции 4.34 м32

  Включено:
  • Вентиляцию квартир с расчетом по назначению помещений и кратности.
  • Вентиляцию офисов с расчетом по количеству людей и компенсации CO2.
  • Вентиляцию магазинов, коридоров, складских помещений и т.д.
  • Соотношение площадей выбрано на основе нескольких существующих комплексов

Среднее значение вентиляции для компенсации с/у, ванных, кухонь и пр. 0,36 м3/м2

  Включено:
  • Компенсация санузлов, ванных комнат, кухонь и т.д. Так как из данных помещений нельзя организовать втяжку в систему рекуперации, то в данный помещения организован приток, а вытяжка идет отдельными вентиляторами мимо рекуператора.

Среднее значение общеобменной вытяжной вентиляции соответственно 3.98 м3/м2

Разница между количеством приточного воздуха и количеством воздуха на компенсацию.
Именно данный объем вытяжного воздуха передает тепло приточному воздуху.

Итак, необходимо произвести застройку района стандартными зданиями с общей площадью 40000 м2 с указанными характеристиками теплопотерь. Посмотрим на чем позволит сэкономить применение систем вентиляции с рекуперацией.

Эксплуатационные расходы

Основной целью выбора систем с рекуперацией, является снижение стоимости эксплуатации оборудования, за счет значительного сокращения требуемой тепловой мощности для нагрева приточного воздуха.
С применением приточных и вытяжных вентиляционных установок без рекуперации мы получим теплопотребление системы вентиляции одного здания 2410 кВт∙ч.

  • Примем стоимость эксплуатации такой системы за 100%. Экономии при этом вообще нет – 0%.

С применением наборных приточно-вытяжных вентиляционных установок с рекуперацией тепла и средним КПД 50% мы получим теплопотребление системы вентиляции одного здания 1457 кВт∙ч.

  • Стоимость эксплуатации 60%. Экономия c наборным оборудованием 40%

С применением моноблочных высокоэффективных приточно-вытяжных вентиляционных установок TURKOV с рекуперацией тепла и влаги и средним КПД 85% мы получим теплопотребление системы вентиляции одного здания 790 кВт∙ч.

  • Стоимость эксплуатации 33%. Экономия с оборудованием TURKOV 67%

Как видно, системы вентиляции с высокоэффективным оборудованием имеют меньшее теплопотребление, что позволяет говорить об окупаемости оборудования в срок 3-7 лет при применении водяных нагревателей и 1-2 года с применением электрических нагревателей.

Расходы при застройке

Если производить застройку в городе, то необходимо выделение значительного количества тепловой энергии из существующей теплосети, что всегда требует значительных финансовых затрат. Чем больше тепла требуется – тем дороже будет стоимость подведения.
Застройка «в поле» зачастую не предполагает подведение тепла, обычно подводится газ и производится постройка собственной котельной или ТЭЦ. Стоимость данного сооружения соразмерена требуемой тепловой мощности: чем больше - тем дороже.
В качестве примера предположим, что построена котельная мощностью 50 МВт тепловой энергии.
Помимо вентиляции затраты на отопление типового здания площадью 40000 м2 и теплопотерями 50 Вт/м2 будут составлять около 2000 кВт∙ч.
С применением приточных и вытяжных вентиляционных установок без рекуперации получится построить 11 зданий.
С применением наборных приточно-вытяжных вентиляционных установок с рекуперацией тепла и средним КПД 50% удастся построить 14 зданий.
С применением моноблочных высокоэффективных приточно-вытяжных вентиляционных установок TURKOV с рекуперацией тепла и влаги и средним КПД 85% удастся построить 18 зданий.
Итоговая смета подведения большего количества тепловой энергии или постройка котельной большой мощности обходится существенно дороже, чем стоимость более энергоэффективного вентиляционного оборудования. С применением дополнительных средств снижения теплопотерь здания можно увеличить застройку без увеличения требуемой тепловой мощности. Например уменьшив теплопотери всего на 20%, до 40 Вт/м2, построить получится уже 21 здание.

Особенности работы оборудования в северных широтах

Как правило оборудование с рекуперацией имеет ограничения по минимальной температуре уличного воздуха. Связанно это с возможностями рекуператора и ограничение составляет -25…-30 oС. Если температура будет понижаться – конденсат из вытяжного воздуха будет замерзать на рекуператоре, поэтому при сверхнизких температурах используется электрический преднагреватель или водяной преднагреватель с незамерзающей жидкостью. Например, в Якутии расчетная температура уличного воздуха -48 oС. Тогда классические системы с рекуперацией работают следующим образом:

  1. Уличный воздух с температурой -48 oС нагревается предварительным нагревателем до -25 oС (Затрачивается тепловая энергия).
  2. С -25 oС воздух нагревается в рекуператоре до -2,5 oС (при КПД 50%).
  3. С -2.5 oС воздух нагревается основным нагревателем до требуемой температуры (Затрачивается тепловая энергия).

При применении же специальной серии оборудования для крайнего севера с 4-х ступенчатой рекуперацией TURKOV CrioVent преднагрев не потребуется, так как 4 ступени, большая площадь рекуперации и возврат влаги позволяют не допускать обмерзания рекуператора. Оборудование работает седеющим образом:

  1. Уличный воздух с температурой -48 oС нагревается в рекуператоре до 11,5 oС (КПД 85%).
  2. С 11,5 oС воздух нагревается основным нагревателем до требуемой температуры. (Затрачивается тепловая энергия).

Отсутствие преднагрева и высокий КПД оборудования позволят значительно сократить теплопотребление и упростить конструктив оборудования.
Применение высокоэффективных систем рекуперации в северных широтах наиболее актуально, так как из-за низких температур уличного воздуха применение классических систем рекуперации затруднительно, а оборудование без рекуперации требует слишком большого количество тепловой энергии. Оборудование Turkov успешно работает в городах с самыми сложными климатическими условиями, в таких как: Улан-Уде, Иркутск, Енисейск, Якутск, Анадырь, Мурманск, а также во многих других городах с более мягким, в сравнении с этими городами, климатом.

Заключение

  • Применение систем вентиляции с рекуперацией позволяет не только снизить эксплуатационные расходы, но в случае масштабной реконструкции или капитальной застройки случаев уменьшить начальные капиталовложения.
  • Максимальной экономии можно добиться в средних и северных широтах, где оборудование работает в тяжелых условиях с продолжительными отрицательными температурами уличного воздуха.
  • На примере здания ФГАУ «НИИ ЦЭПП» система вентиляции с высокоэффективным рекуператором позволит сэкономить 3 млн 33 тыс.руб в год – в сравнении с прямоточной ПВУ и 1 млн 40 тыс.руб в год – в сравнении с наборной ПВУ, КПД которой 50%.